004 | protoCELL

protoCELL_parametric building blocks_Hyperbody 2010
protoCELL_parametric building blocks_Hyperbody 2010

004 protoCELL

The protoSPACE lab 2.0 in the iWEB has to close down due to the 2008 fire, which destroyed the Faculty of Architecture. In pring 2010 we opened protoSPACE 3.0 inside the walls of a new BK City. In the 2009 MSc2 course Hyperbody students designed a new protoSPACE 4.0 lab, a standalone pavilion between BK City and the Delft Science Centre. For protoSPACE 4.0 we developed a complete new building system based on an assemblage of large unique CNC produced building blocks. The prototypical building block we named protoCELL. The parametric protoCELL unit comes in a series of interacting function-specific swarms: daylight swarm, artificial light swarm, ventilation swarm, interaction swarm, heating swarm, display swarm. Each featured swarm consists of 10-20 parametric building components. The different swarms interact in a loose configuration, intermingling the specified functional units, but never betraying to which swarm one belongs. the units are CNC milled from polystyrene foam and coated with a strong polyurea skin. All building blocks of all swarms are structural as well as provide for insulation. The hundred large building blocks of the proposed protoSPACE 4.0 fit together like the unique pieces of a 3d puzzle. The gravity center of the units form the point cloud of reference points. The reference points are further specified as to form the details of the geometric relations between the units. Each reference points thus becomes a group of parametric related points.

002_Point Cloud

point cloud of reference points_A2 Sound Barrier_2015
point cloud of reference points_A2 Sound Barrier_VAA.ONL 2015

002 Point Cloud Acoustic Barrier / A2 Cockpit

In 1998 we got commissioned by Nora Hugenholtz of Projectbureau Leidsche Rijn the design of a 1.6 km long acoustic barrier along the A2 highway, and we were asked to think about how to represent the commercial firms behind the barrier. We applied the strategy of multiple use of the ground, and proposed to embed a substantially bi building in the very volume of the barrier. In fact we considered the barrier and the A2 Cockpit building – as we proposed to brand it – as one continuous structure, only to pump up its volume where it was needed. Intuitively we combined many strategies into one coherent structure. Only because we described the project conceptually as one unified entity, we could take the logical consequence and develop one organizational structure for the whole project, including the flattened and cantilevering endings and the expanded Cockpit bubble. We came up with the concept to establish a point cloud of thousands of reference points. The points featured an exact position in space, which enabled us to write a script describing all constituting building components with high precision. It was unprecedented at that time, and still is unique that an architect actually controls the complex geometry in such high precision that the manufacturer – Meijers Staalbouw – can use the architect’s data for the CNC production. All components, steel, glass and rubber are customized to the extreme. Each and every component is different in its dimensions and its shape. The radical file to factory [F2F] process of mass customization was born. We have applied it ever since.